
CFPAYMENT 1.0
Project founder: Brian Ghidinelli / http://www.ghidinelli.com
Core contributor: Mark Mazelin / http://www.mkville.com

CFPAYMENT is a library designed to make implementing e-commerce transactions easy in
ColdFusion. Rather than roll your own gateway with error, currency and money handling,
either leverage one of our existing gateways or extend our base gateway and write
only the code necessary to create requests and parse responses for your gateway. This
eliminates writing lots of boilerplate code and handling esoteric CFHTTP errors that only
seem to happen in production.

You may notice copyright notices in some files going as far back as 2008. While we are
just now releasing a 1.0, this code has processed tens of millions of dollars in mission-
critical e-commerce systems. Use it with confidence!

Overview
CFPAYMENT is a payment processing abstraction library for credit card, ACH and third-party
payment gateways (like Paypal). It is inspired by the Ruby ActiveMerchant library and is
designed to work with any payment gateway including name-value pairs, XML, RESTful or
any other API. The project is organized into several layers that can be used depending on
your needs:

Library Description Status

Core Basic processing, error
handling, currency support,
gateway responses

AVAILABLE (1.0 as of 3/21/
2012)

Transaction Wrap core with pre/post
database storage for
reliability, reporting

Pending

High-Availability Wrap transaction with
failover and multi-gateway
support

Pending

One of the core goals of CFPAYMENT is to abstract away the specifics of individual payment
gateways to make it easier to change gateways when the need arises. This provides more
flexibility for the business without sacrificing anything at the code level.

As a result, each gateway maps its unique implementation details into a common response
object:

.purchase(money, account, options) => response
.authorize(money, account, options) => response

http://www.ghidinelli.com
http://www.ghidinelli.com
http://www.ghidinelli.com
http://www.ghidinelli.com
http://www.ghidinelli.com
http://www.ghidinelli.com
http://www.ghidinelli.com
http://www.mkville.com
http://www.mkville.com
http://www.mkville.com
http://www.mkville.com
http://www.mkville.com
http://www.mkville.com
http://www.mkville.com

.capture(money, authorization, options) => response

.void(transactionid, options) => response

The Core and Transaction APIs are designed for most developers who want to satisfy the
most common need: process payments for a single merchant account against a single
gateway. The high-availability API is designed for more advanced e-commerce operations
who have multiple merchant accounts and gateways for failover or load balancing.

Stupid Simple Code Sample

Here’s what it takes to get started with CFPAYMENT in just a few lines of code:

var cfg = { path = “braintree.braintree”, Username = “test”, Password

= “password”, SecurityKey = “1234567890”, SecurityKeyID = “1234”, TestMode

= true }

cfpayment = createObject(“component”, “cfpayment.api.core”).init(cfg);

gateway = cfpayment.getGateway();

money = cfpayment.createMoney(5000); // $50.00 in cents

account = cfpayment.createCreditCard().setAccount(“4111111111111111”)

 .setMonth(10)

 .setYear(2015)

 .setVerificationValue(999)

 .setFirstName(“John”).setLastName(“Smith”)

 .setAddress(“888 Main Road”).setPostalCode(“77777”);

response = gateway.purchase(money = money, account = account);

if (response.getSuccess())

 // charge went thru! you’re rich!

else

 // charge failed, why?

 writeOutput(response.getMessage());

Easy, eh?

System Requirements

● ColdFusion MX 7+ (Note: examples use CF8 inline structure creation syntax)
● CreateObject() must be enabled on the server
● Ability to map “cfpayment” OR put the files in a folder off of the webroot
● Optional: Java object access will enable smart timeout handling

Supported Gateways

Authorize.net

Braintree Orange platform currently (including transparent redirect and
vault support), Blue platform coming soon

GoEMerchant

iTransact XML backend gateway

Paypal Website Payments Pro

SkipJack

Stripe

VirtualMerchant Under development

Not listed? If you don’t see your gateway listed here, adding support is
super easy. Check out our Notes for Creating a Gateway

CORE API
The core is effectively a factory for generating objects and instantiating gateways. Actual
gateway implementations extend cfpayment.api.gateway.base which provides a boilerplate
interface. The core service is initialized by passing in a configuration argument (ColdFusion
structure) having a path to the gateway object and various other parameters such as MID,
username, password, etc:

Method Description

.init(config) Initialize the core API with a struct and configure a
gateway implementation. Each gateway has its own config
parameters that typically include usernames, passwords,
test mode flag, merchant account ID, etc. See Appendix A
for examples.

.getVersion() Return the CFPAYMENT version you are using.

.createCreditCard() Return a credit card object that holds name, address,
cardholder data and has verifications for valid card numbers
and card type (Visa, M/C, AmEx, Discover). Can return a
masked credit card number in compliance with PCI DSS.

.createEFT() Return an EFT object that holds name, address, and bank
account information.

.createMoney() Return a currency object to hold an amount. Supports
currencies that do not divide units into 100 parts.

.createToken() For tokenized gateways such as Braintree, Authorize.net
and TrustCommerce which return identifiers that represent
cardholder data without requiring you to hold on to the
original numbers.

.getGateway() Return the gateway specified by the configuration passed to
init()

.getStatusUnprocessed() Denotes a transaction is not yet processed

.getStatusSuccessful() Denotes transaction was processed

.getStatusPending() Denotes transaction has been submitted to gateway but has
not yet returned with a result.

.getStatusDeclined() Transaction was declined

.getStatusFailure() Indicates something went wrong like the gateway threw an
error but we believe the transaction was not processed

.getStatusTimeout() The request to the gateway timed out leaving the
transaction in an unknown state.

.getStatusUnknown() An exception that we don’t know how to handle (yet) has
occurred.

.getStatusErrors() Returns a list of statuses that are considered an error
condition (Failure, Timeout, Unknown)

Gateways are designed to be in test mode by default! That is, it requires an
explicit "TestMode: false" configuration to enable live processing of transactions. See the
Notes for Gateway Developers at the end of this document for more information on gateway
creation.

Once the core object has been created using createObject(), you can create a gateway
object by calling core.getGateway(). Individual gateways implement one or more of the
following methods:

Method Description

.purchase(money, account,
options)

Authorize + capture in a single transaction

.authorize(money, account,
options)

Authorize a transaction (usually returning an authorization
number for later capture)

.capture(money,
authorization, options)

Use a previous authorization to capture a transaction

.void(id, options) Void a previous transaction that has not yet settled

.status(transactionid,
options)

Retrieve details about a transaction

.recurring(mode, money,
account, options)

Set up or modify a recurring transaction

.settle(options) Some gateways require an explicit settlement call to close a
batch.

.store(account, options) Put an account into a vault like with Braintree, usually
returns a token

.unstore(account, options) Remove an existing account from the vault

.get(id, options) Retrieve an account from the vault

RESPONSE OBJECT

Method Description

.getSuccess() true/false if the transaction succeeded

.hasError() If NOT getSuccess(), is there a defined error or was the
transaction just declined?

.set/getStatus() Get the status code as defined in core.cfc. This is more
valuable than just success/fail because you probably want
to handle connection timeout differently than declined.

.set/getMessage() The result in plain text

.set/getResult() Get the raw result from the gateway (e.g., name-value
pairs, XML, JSON, etc)

.set/getParsedResult() Get the parsed result after some processing by the gateway
into a ColdFusion data structure like struct or array

.set/getTest() Is this a test transaction?

.isValidAVS(allowBlank,
allowPostalOnlyMatch,
allowStreetOnlyMatch)

Did the address verification system (AVS) pass? To what
extent?

.isValidCVV(allowBlank) Did the security code check pass?

.get/setCVVCode() Get or set the result character

.get/setCVVMessage() Get the text description of the result which can be displayed
to the user.

.get/setAVSCode() Get or set the result character

.get/setAVSMessage() Get the text description of the result which can be displayed
to the user.

.get/setAVSPostalMatch() Did the Postal/Zip code match?

.get/setAVSStreetMatch() Did the street address match?

.get/setTokenID() Get the vault token ID associated with this transaction.

MONEY OBJECT
Gateway methods use a money object to track the amount to be charged and the currency
in which to process. Currently this is more or less a placeholder for more robust currency
conversion but it can be used to pass a different currencies to a single gateway (like USD
and CAD):

Method Description

.init(cents, currency) Not all currencies divide up their units into
fractions of 100. We also want to be careful
about rounding errors caused by floating
point math. As a result, we store amounts
as an integer in cents. $1.00 USD would
be 100 cents. $50.50 USD would be 5050
cents. Currency defaults to USD.

.get/setCents() Store amount as an integer in “cents”

.getAmount() Return getCents()/100 as a convenience
function. For currencies that don’t use 100,
this method would be overridden to divide
by the right number.

.get/setCurrency() Defaults to USD but can be changed.
No auto foriegn exchange conversion
performed at this time. Uses three-letter
ISO codes.

Because gateway implementations vary so much, methods like authorize() and purchase()
take an options structure for additional parameters to send to the gateway. The options
structure gives cfpayment the flexibility to support multiple gateways, but also becomes
the part that will vary as your application uses different gateways. Some examples might
include:

● External ID
● Currency type
● IP address
● Tax Rate / Tax Amount
● Country code

The key to cfpayment is that we have tried to normalize these option names. While
Braintree expects transaction_id and iTransact wants ExternalID, cfpayment defines it
as transactionId. Each gateway developer translates the common transactionId into the
required parameter for their gateway.

Exceptions and Validation
In general, the API throws errors that can be caught with CFTRY/CFCATCH for
unrecoverable errors introduced by the developer. Model objects like creditcard and
eft come with a validate() routine which returns an array of errors and helper function
getIsValid() to determine if the user-supplied data is valid.

The idea is that CFPAYMENT throws exceptions for things that should be corrected during
development and returns an array of errors for things that can be corrected in production.

The core API throws the following exceptions:

Exception Description

cfpayment.InvalidGateway Gateway specified by the config object does not exist
or could not be instantiated. This is probably because
your path to the gateway CFC is wrong. It should
be relative to the "gateways" folder so cfpayment/
api/gateway/bogus/gateway.cfc would be specified
as "bogus.gateway".

cfpayment.InvalidAccount The account type passed is not supported (e.g., used a
creditcard for a check operation)

cfpayment.MethodNotImplement
ed

Method has not been written or is not supported. An
example would be calling authorize() for e-checks
which only have purchase() typically.

cfpayment.MissingParameter.Ar
gument

Required argument was missing

cfpayment.MissingParameter.Op
tion

Required parameter in the options structure was
missing. These are checked in individual gateways
using the verifyRequiredOptions() method.

cfpayment.InvalidResponse.AVS The returned AVS code (a single character) was not
understood - this may mean a new response type
has been introduced that needs to be added to the
response object

cfpayment.InvalidResponse.CVV The returned CVV code (a single character) was not
understood - same result as AVS.

If you're not familiar with custom exception type handling in ColdFusion, you can catch

them like so:

<cftry>

 <cfset bogusGateway.credit(money = myMoney, account = myAccount,

options = myOptions) />

 <cfcatch type="cfpayment.MissingParameter.Argument">

 // do something when an argument is missing

 </cfcatch>

 <cfcatch type="cfpayment.MissingParameter">

 // do something if any kind of missing parameter error is
throw, .Argument, .Option, etc

 </cfcatch>

 <cfcatch type="cfpayment.MethodNotImplemented">

 // do something if this method is not implemented

 </cfcatch>

 <cfcatch type="cfpayment">

 // catch any other kind of cfpayment.* error type not specifically

caught above from cfpayment.InvalidResponse.CVV to

cfpayment.InvalidGateway

 </cfcatch>

</cftry>

TRANSACTION API (under development)

The Core API illustrates the simple, building-block approach to payment processing. The
Transaction API was born out of five years of production experience and understanding the
full range of things that can go wrong with any given transaction. Eventually something will
go bump in the night and a transaction will fail. Being able to reconcile these transactions
either automatically or manually is a critical component of ensuring that your records are
accurate and your customers were not charged more than once.

Generally speaking, the Transaction API is simply functionality that executes before and
after the Core API. It requires database tables to be present. It first inserts the payment
attempt in the database, then attempts to process the payment using the Core API, then
updates the database with the results and returns them. The API will appear to be a lot like
our response object but with "stateful" information such as its unique ID, status, processor
ID and so forth. These attributes allow a developer to relate a single payment attempt to
the rest of their system.

HIGH-AVAILABILITY API (under development)

The High-Availability API takes the Transaction API and extends it work across multiple
payment gateways. If a transaction fails and meets certain criteria, it is automatically
retried against another gateway.

The config object is an array of gateway configs like:

cfg = [{path: 'itransact.itransact_cc'
 ,mid: 123456
 ,username: test
 ,password: test

 ,priority: 1

 ,weight: 100}
 ,{path: 'braintree.braintree'
 ,mid: 654321
 ,username: btree
 ,password: btree

 ,priority: 2
 ,weight: 100}

];

The High-Availability API can also be used for load balancing between multiple gateways if
desired.

EXAMPLES

We have included two examples that show how to use the gateways. They both default to
using the bogus gateway, but can be easily changed with one line of code. To run them,
make sure you can access the cfpayment folder from your webroot, then visit the examples
home page (changing localhost to whatever your workstation/server name is):

http://localhost/cfpayment/docs/examples/

The Simple Checkout has a generic credit card form that submits to the bogus gateway. It
shows any errors in both your form fields and gateway results at the top of the form. The
_process.cfm file can be used as an example of how to process form submissions, but stops
short of doing anything with the gateway processing results.

The ColdSpring example shows how you can instantiate the cfpayment service core and
gateway using a coldspring xml file. It also implements a simple AOP logging system that
tracks calls to the gateway and stores them in the request scope. This example requires
that you have coldspring installed and accessible:
http://www.coldspringframework.org/

Notes for Creating a Gateway
The easiest way to create your own gateway is to open up an existing gateway and make
changes. Although it may look intimidating at first, most of your actual code will simply be
converting the normalized CFPAYMENT parameter names into gateway-specific parameter
names, building up the data for a request and passing it to process(). Then parse the
response back into normalized CFPAYMENT parameters and use the common response
object.

Each gateway implementation extends cfpayment.api.gateway.base. The base component
provides the network transmission and error handling for all gateway implementations in
process(). This centralizes the actual network component in a single location where we can
focus on robust error handling. With payment processing, it is critically important to be able
to recover when things go wrong to prevent double charges and keep records accurate. My
experience with a flaky gateway company in the past has given me great insight into how to
manage these exceptions.

http://localhost/cfpayment/docs/examples/coldspring/
http://localhost/cfpayment/docs/examples/coldspring/
http://localhost/cfpayment/docs/examples/coldspring/
http://localhost/cfpayment/docs/examples/coldspring/
http://localhost/cfpayment/docs/examples/coldspring/
http://localhost/cfpayment/docs/examples/coldspring/
http://localhost/cfpayment/docs/examples/coldspring/
http://localhost/cfpayment/docs/examples/coldspring/
http://localhost/cfpayment/docs/examples/coldspring/
http://localhost/cfpayment/docs/examples/coldspring/
http://www.coldspringframework.org/
http://www.coldspringframework.org/
http://www.coldspringframework.org/
http://www.coldspringframework.org/
http://www.coldspringframework.org/
http://www.coldspringframework.org/
http://www.coldspringframework.org/
http://www.coldspringframework.org/

This could be overridden for a gateway that used a protocol other than HTTP or had some
other unusual requirements. It could also be extended and executed via super.process()
depending on requirements. Most gateway developers will simply call it without any
additional processing.

Method Description

.init(config) Initializes the gateway. Automatically runs set*()
when it finds an argument with a corresponding set
method.

getGatewayName() Get the gateway name as configured

getGatewayVersion() Get gateway version as configured

get/setTimeout() Control the network timeout (for CFHTTP)

.get/setTestMode() Control test mode. Gateways must default to test
mode. This requires the user to put it into production
mode.

.getGatewayURL() Get the URL to the gateway end point. Supports live
and test URLs.

.getService() Private method that can be used to access the core
API for access to status methods or generating model
objects.

.get/setMerchantAccount() Control the merchant ID or account ID for the gateway

.get/setUsername() Login credentials for gateway

.get/setPassword() Login credentials for gateway

.get/setGatewayID() Used by Transaction/HA APIs to differentiate which
gateway processed a given transaction.

.getCurrentRequestTimeout() Uses underlying Java to figure out how long the current
request time out is set to. We use this to intelligently
modify the page request timeout to make sure error
handling can run successfully.

.process(method, payload,
headers)

Transport and network/connection error handling.
Expects a payload (either XML/JSON for a body request
or a structure of name-value pairs) and an optional
structure of headers. Normalizes the HTTP response
code and response into a structure.

.doHTTPCall(url, method,
timeout, headers, payload)

Private method that wraps CFHTTP to improve testing.
Do not call this directly.

.createResponse() Generate the response object with status set to
unprocessed. On very rare occasion, a gateway may
need to override this with a custom implementation.

.getOption(), .verifyRequiredOpt
ions()

Use to verify that the options struct is properly
populated for a given request.

.isValidPeriodicity(), .getPeriodici
tyValue()

Normalized recurring transaction values to make it
more consistent how to pass in “weekly”, “monthly”,
etc.

.getIsCCEnabled(), .getIsEFTEna
bled()

Reports back if the gateway supports these two types
of transactions.

Options Naming

While the base API is well defined in CFPAYMENT, each gateway may accept any number
of optional or required parameters via the options structure. To simplify end-user
consumption of the gateways, we have standardized the name of the keys for commonly
used options. It is important that you translate these option keys to whatever your
gateway requires to help keep the API homogenous.

Option Key Value Description
email E-mail Address

transactionId Transaction ID Id provided by gateway for referencing
the processed transaction

ipAddress IP Address Address of the payee, not your server
(typically CGI.remote_addr)

orderId Internal Order or Payment ID Some gateways allow you to record
your ID in their system for reporting,
email receipt or redirect use. We
would recommend passing in whatever
value you will record this payment as
in your system. If you use an integer
or UUID primary key, for example,
pass the value here. Not all gateways
support all data types or lengths here,
so check the docs.

customerId Internal customer ID Some gateways allow you to record
this in their system for reporting,
email receipt or redirect use. If
orderId refers to a single transaction,
customerId would refer to “John
Smith”.

shippingAddress Structure containing the
following keys: name,
company, address1,
address2, city, region,
country, postalcode, phone

While the billing address is stored in
the account you pass to a method, you
can also supply alternative shipping
address in a structure.

orderDescription Description of the purchase

startDate Start date Used for status and reporting queries

endDate End date ""

tokenId Vault/Lockbox token
identifier

For services that support remote data
storage (Braintree, Authorize.net,
TrustCommerce...), this is the
normalized ID that references
the stored token. For example,
Braintree calls this customer_vault_id,
so we map options.tokenId to
customer_vault_id behind the scenes.

tokenize Vault/Lockbox token trigger Vault/lockbox services typically support
two mechanisms for storing data:
either explicitly as a "store" method,
or as part of a regular transaction like
an authorize or purchase to save the
account details for later use. This
boolean may be necessary when you
want to trigger the creation of a token
for a given account.

Testing
All gateways are required to have unit tests. If you are not familiar with MXUnit, copy the
tests from the Braintree template as a starting point. You can get MXUnit at mxunit.org.

Support

If you need help developing a gateway, we are happy to help! Just hit up the Google Group
at http://groups.google.com/group/cfpayment

LICENSING
CFPAYMENT is licensed under the Apache Software License 2.0, the full text of which is
at http://www.apache.org/licenses/LICENSE-2.0. Generally speaking, the ASL allows you
to use this code in any way you see fit, including in closed-source or commercial software,
so long as the copyright notice stays intact and you clearly mark any changes you make.
While you are not required, please consider contributing enhancements back to the project
so that everyone benefits. That's how open source works!

http://groups.google.com/group/cfpayment
http://groups.google.com/group/cfpayment
http://groups.google.com/group/cfpayment
http://groups.google.com/group/cfpayment
http://groups.google.com/group/cfpayment
http://groups.google.com/group/cfpayment
http://groups.google.com/group/cfpayment
http://groups.google.com/group/cfpayment
http://groups.google.com/group/cfpayment
http://groups.google.com/group/cfpayment
http://groups.google.com/group/cfpayment

Appendix A: Sample Gateway Configs

When instantiating the core API, a configuration object must be passed in order to initialize
the gateway. Each gateway will have its own requirements (read the docs). Here are
some samples with common parameters such as account numbers, usernames and
passwords:

cfg_cc = {path: 'itransact.itransact_cc'
 ,mid: 123456
 ,username: production
 ,password: production}

cfg_eft = {path: 'itransact.itransact_eft'
 ,mid: 223422
 ,username: test
 ,password: test
 ,TestMode: true} // offer way of toggling on a per-gateway basis

cfg_bt = {path: 'braintree.braintree'
 ,mid: 654321
 ,username: btree
 ,password: btree
 ,failOnAVS: true // additional config options on a per-gateway basis could
support custom capabilities
 ,failOnCVV: true}

cfg_sj = {path: 'skipjack.skipjack_cc'

 ,MerchantAcount="123456"
 ,UserName="devuser"
 ,Password="devpass"
 ,DeveloperSerialNumber="11223344" // additional config options on a per-

gateway basis support custom capabilities
 ,LoginSerialNumber="55667788"
 ,TestMode=true }

